

Cambustion instruments for gas filtration R&D

Ensuring the highest accuracy measurements of the most penetrating particle size

Presented by Yixin Zou

Cambustion Ltd, Cambridge, UK

- Founded in 1987 by a research group from the Cambridge University.
- We develop and support instruments for many gas and particle applications (including indoor air quality, climate science, metrology and nanoparticle characterisation).
- We also offer consultancy services on aerosol and filtration measurements.

Aerosol instruments for gas-particle filtration R&D and filter media testing

Aerodynamic Aerosol Classifier (AAC)

Established technique for selecting monodisperse particles by aerodynamic diameter

NEW Condensation Particle Counter (CPC) 5210

Fast-response detection of aerosol particles from 5 nm to 10 micrometers.

NEW Aerosol Diluter AD60

Flexible diluter offering a wide range of dilution factors.

Complete benchtop setup for testing filter media samples

The old technique for classifying particles

Most common aerosol classifier is the Differential Mobility Analyser (DMA)

- Used since the 1970s, and specified in international standards for filter testing (e.g. ISO 29463)
- Particles must be charged by a radioactive (or X-ray) neutraliser before entering the column, where they move across a sheath flow in an electric field

The DMA is intended to transmit singly-charged particles:

- This significantly <u>limits transmission efficiency</u>
- Larger, <u>multiply-charged particles</u> with the same electrical mobility may also pass

Particles are not truly monodisperse, which may affect accuracy of filter penetration measurements...

A better technique for classifying particles

Aerodynamic Aerosol Classifier

Commercially available since 2016

Select particles by size without a charge conditioner

Wide size range: $25 \text{ nm to } > 5 \mu\text{m}$ aerodynamic diameter

Advantages for filtration studies:

- Aerosol flow is truly monodisperse, not dependent on the particle charge state
- High transmission efficiency reduces uncertainty in filter penetration measurements
- Aerodynamic diameter is the most relevant particle metric when studying aerosol flow through filter media and deposition of particles in respiratory system

5210 CPC

New!

Condensation Particle Counter

Nanoparticle concentration measurement from **5** nanometers **to 10** microns

- Wide detection range: d50,min 5 nm d50,max > 10 μ m up to 10⁵ /cc
- Fast time response: T10-90% ~ 40 ms up to 50Hz data rate
- Automatic conversion of temperature and pressure conditions
- Touchscreen, web, ethernet, RS232, USB, analogue interfaces
- Wickless mixing design for low maintenance, calibration stability and portability

Aerosol Diluter AD60

New!

- Controllable dilution over more than two orders of magnitude
- Feedback control and monitoring for accuracy and stability with logging.
- Compatible with solid and/or liquid aerosols

Aerosol Rotating Disc Diluter

Variable diluter for general-purpose lab applications

Filter penetration measurements using two different classifiers

- Samples from face masks and air filter media sealed in filter holder
- Both AAC and DMA operated at 10:1 sheath:sample flow ratio (aerodynamic diameter setpoints converted to electrical mobility equivalent for DMA)

Payne et al., "A New Methodology for Measuring Filtration Efficiency as a Function of Aerodynamic Diameter Using a Monodisperse Aerosol Source", FILTECH 2018

Classifier transmission efficiency: AAC v DMA

- Two test aerosols from international standards:
 - NaCl (sodium chloride, solid particles) for face masks
 - DEHS (dioctyl sebacate, oil particles) for air filters
- AAC <u>transmission efficiency is 1.5 to 5.5 times higher</u> than the DMA across particle sizes tested from both aerosols:

Multiple charging worst case scenario

What happens if particles are selected from the left side of the distribution from the aerosol generator?

- DMA: Particles of different sizes emerge because a significant amount of larger, multiply charged ones are selected
- AAC: Concern is eliminated and <u>only one</u> <u>particle size emerges</u>

Air filter penetration results: AAC v DMA

Here are the consequences for filtration results:

- AAC reveals artefacts in MPPS measured with DMA.
- Although, artefacts can be eliminated if:
 - Impactor is fitted on the DMA inlet to remove some larger particles
 - Only particle sizes on the right side of the distribution are selected, requiring multiple aerosol generators
- None of these measures are necessary if using an AAC instead

Why is this effect of concern?

Beyond the regulations:

- The measurement of MPPS can depend on the challenge aerosol size distribution
 - Data taken with different aerosol sources may indicate apparently inconsistent filter performance

- May lead to misleading outcomes when using data derived from DMA testing to:
 - Predict real world performance
 - Guide selection/design criteria for applications

- The Aerodynamic Aerosol Classifier offers an alternative
 - Without the artefacts
 - Without particle charging

Summary

Cambustion AAC

- Can select truly monodisperse particles for testing.
- No potential charging artefacts that occur with the DMA
- Higher transmission efficiency
- Enables correct measurement of the filter MPPS.

5210 CPC

- Precisely measures number concentrations of particles from 5 nm to 10 micrometers.
- Optimized for fast response, ease of use, calibration stability and portability.

AD60 Diluter

- Achieves over two orders of magnitude of dilution
- Offers maximum flexibility and stability in test particle concentration

Thank You!

Come find us at our exhibition booth for more detailed information.